?زیرگروههای مشتق حاصلضرب هایی از? ?یک زیرگروه آبلی و یک زیرگروه دوری?

thesis
abstract

?نشان می دهیم اگر ? g = ab?گروه متناهی باشد که در آن ? a, b?زیرگروههای آبلی اند،? ?آنگاه بنا به قضیه ی ایتو زیرگروه مشتق یعن ?? g?آبلی است.? ?همچنین در حالت که زیرگروههای ? a?یا ? b?دوری باشند، می توان خواص بیشتری را مورد بررسی قرار داد. نشان? ?می دهیم، به عنوان مثال (? g? /(g? ? a?در این حالت با زیرگروهی از ? b?یکریخت است.?

First 15 pages

Signup for downloading 15 first pages

Already have an account?login

similar resources

طول مشتق لی جبرهای گروهی با زیرگروه مشتق دوری

در این پایان نامه طول مشتق لی جبرهای گروهی با زیرگروه مشتق دوری را به دست می آوریم. برای این کار بر حسب پوچتوانی گروه پایه بحثمان را در دو بخش مجزا انجام می دهیم

15 صفحه اول

بررسی درجه آبلی زیرگروه های یک گروه متناهی ناآبلی

هدف اصلی ای پایان نامه بررسی درجه آبلی گروه های متناهی است. درجه آبلی یک گروه g احتمال جابجایی دو عضو از گروه است. سعی می کنیم کران هایی برای درجه آبلی گروه های متناهی ناآبلی ارئه نمائیم. بریا یک گروه متناهی g و زیرگروه h از g وابستگی درجه آبلی h در g احتمال آن است که عنصری از h با عنصری از g جابجا شود. همجنین مجموعه ای از تمام وابستگی درجات آبلی از زیرگروه های g را با نماد (d(g نمایش داده می ش...

زیرگروه های یک زیرگروه زیرنرمال در یک حلقه تقسیم

فرض کنیدdیک حلقه تقسیم با مرکز f و گروه ضربی *^d باشد. در این پایان نامه ساختار زیرگروهی از زیرگروه زیرنرمال دلخواه g از *^d را مورد بررسی قرار می دهیم. به طور خاص نشان می دهیم که اگر d موضعا متناهی باشد، آنگاه g شامل یک زیرگروه آزاد غیردوری است.همچنین ساختار زیرگروه های ماکسیمال g را مورد بررسی قرار می دهیم.

زیرگروه خودجابجاگر یک گروه

در این پایان نامه ، زیرگروه خودجابجاگر و مرکز مطلق یک گروه معرفی می شوند. می توان مشتق و مرکز یک گروه را برحسب خود ریختیهای داخلی آن گروه تعریف کرد.حال اگر به جای خود ریختیهای داخلی گروه خودریختیهای گروه را در نظر بگیریم به ترتیب زیرگروه خودجابجاگر و مرکز مطلق گروه بدست می آیدوبه وسیله آنها یکی از نتایج معروف شور را تعمیم می دهیم.همچنین کران هایی برای آنها ارائه می دهیم در ادامه گروه های دوری ر...

15 صفحه اول

حلقه هایی بدون ایدآل های ماکسیمال

در کلاس درس جبر مجرد رسم بر این است که با استفاده از لم زرن ثابت می کنند که حلقۀ یکدار باید ایدآلهای ماکسیمال داشته باشد. این حکم بدون عنصر یکه نمی تواند درست باشد. در اینجا چند مثال نقض از حلقه های جابه جایی ارائه می کنیم. ابتدا حلقه های با ضرب بدیهی یعنی آنهایی که برایشان حاصلضرب دو عنصر صفر باشد، را در نظر می گیریم. در این صورت یک ایدآل دقیقاً یک زیرگروه جمعی است و ما در جستجوی گروههای آبلی ب...

full text

وجود یک زیرگروه جابجاگر بزرگ

با قرار دادن شرایطی روی گروه می توان کران هایی برای اندازه زیرگروه مشتق بدست آورد. در هر گروه متناهی زیرگروهی از مشتق آن به نام باقیمانده پوچتوان وجود دارد. باقیمانده پوچتوان کوچکترین زیرگروه نرمال از گروه است که خارج قسمت آن پوچتوان است. برای یک گروه متناهی ارتباط بین اندازه باقیمانده پوچتوان و مرکز گروه را مطالعه میکنیم و ثابت میکنیم اگر گروه حل پذیر باشد به طوری که زیرگروه فراتینی و مرکز آن ...

15 صفحه اول

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


document type: thesis

وزارت علوم، تحقیقات و فناوری - دانشگاه علوم پایه دامغان - دانشکده ریاضی و کامپیوتر

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023